NASA Contractor Report - 181655
ICASE REPORT NO. 88-2

[CASE

PARALLEL ALGORITHMS FOR MAPPING PIPELINED
AND PARALLEL COMPUTATIONS

David M. Nicol

{(NASA-CR-181655) PABALLEL ALGORITHMS FOR N88-21687
MAPPING PIPELINED AND PARALLEL COHPUTAIICNSA
Final Report {NASA) 35 p CSCL 99B

Unclas

G3/61 0140252

Contract No. NAS1-18107
Aprilfwl%ss T s Tl B :':?i o "'j:{ T —)

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NASA

National Aeronautics and
Space Administration

Langiey Resserch Center
Hampton, Virginia 23665

Parallel Algorithms for Mapping Pipelined and
Parallel Computations

David M. Nicol*
Department of Computer Science
The College of William and Mary

Williamsburg, VA 23185

Abstract

Many computational problems in image processing, signal processing, and scientific
computing are naturally structured for either pipelined or parallel computation. When
mapping such problems onto a parallel architecture it is often necessary to aggregate
an obvious problem decomposition. Even in this context the general mapping problem
is known to be computationally intractable, but recent advances have been made in
identifying classes of problems and architectures for which optimal solutions can be
found in polynomial time. Among these, the mapping of pipelined or parallel computa-
tions onto linear array, shared memory, and host-satellite systems figures prominently.
This paper extends that work first by showing how to improve existing serial mapping
algorithms. Our improvements have significantly lower time and space complexities: in
one case we reduce a published O(nm?) time algorithm for mapping m modules onto n
processors to an O(nm log m) time complexity, and reduce its space requirements from
O(nm?) to O(m). We then reduce run-time complexity further with parallel mapping
algorithms based on these improvements, that run on the architectures for which they
creating mappings.

*This research was supported in part by the National Aeronautics and Space Administration under NASA
contract NAS1-18107 while the author was in residence at ICASE, Mail Stop 132C, NASA Langley Research
Center, Hampton, VA 23665.

1 Introduction

Many computational problems in image processing, signal proccssing, and scientific com-
puting are naturally structured for either pipelined or parallel computation. It is common
for an obvious problem decomposition to have more components, or “modules” than there
arc processors. We must then map the computation by aggregating modules. The general
mapping problem is known to be intractable but recently advances have been made by
Bokhari[4] in identifying classes of problems and architectures for which optimal solutions
can be found in polynomial time. Among these types of computations, a set of mod-
ules configured as a chain figures prominently. Unless otherwise stated, all references to
Bokhari’s work refer to [4].

As pointed out by Bokhari, the problem of mapping module chains onto different types
of architectures frequently arises in image and signal processing applications; it may also
arise in the parallel solution of partial differential equations. The concept of “module”
can be quite general. For example, a signal processing application may require a signal to
be Fourier-transformed, massaged in the frequency domain and then inverse-transformed.
Each stage may be viewed as a module, or a stage may be subdivided into a sequence of
modules. In an image processing context we may find similar processing stages for every
frame of data. A common means of numerically solving a partial differential equation
(PDE) in parallel is to decompose the PDE domain into strips[12]. The computation asso-
ciated with a strip is the collection of all grid point updates required for points within the
strip. The communication requirements between strips gives this computation a chain-like
structure. At a given iteration, all strips may be updated in parallel, with communication
occuring at the iteration’s end. Grids may be irregular, giving strips different execution
weights. A viable means of balancing the workload is to decompose the domain into many
more strips than there are processors, and then aggregate them into equi-weighted super-
strips. Modules are also easily identified in a computation described by a directed acyclic
graph (DAG) whose nodes describe computations, and whose arcs define data dependen-
cies. The “level” of a DAG node u is the smallest number of nodes on a path from any
source node (no incoming arcs) to u; the collection of all nodes at a given level can con-
stitute a module. It is not immediately obvious that a chain structure between modules
should result, since a node in module k (equivalently, at level k) may depend on a node
in module ¢ < k — 1. However, we can create a chain-like communication arrangement if
we require every module j to transmit all its results to module j + 1 and to transfer any
results received from module j — 1 which are to be used by modules £ > j. We can then
pipeline multiple independent invocations of the DAG computation.

Current paralle]l architectures compel us to at least consider chain decompositions. For
example, the CMU Warp[1] is a linear array of high-powered processors, so that pipelining
scquential modules is a natural solution approach. It can be advantageous to use chains
even if the cominunication topology is rich. For example, the Intel iPSC (hypercube) has
very high communication startup costs which are nearly independent of the message size.

Better performance is sometimes seen by minimizing the number of messages, rather than
the message volume [14]. The performance-conscious programmer again is encouraged
to limit the interconnection structure of the problem decomposition; a chain offers the
simplest of useful structures.

Let My, My, ..., M,, denote a chain of m modules which may be executed concurrently.
As we have described, the modules may form a pipeline of computations or may describe a
parallel computation whose communication requirements are local. The mapping problem
under the contiguity constraint is to assign each M; to one of n processors in such a way
that the set of modules assigned to a processor forms a contiguous subchain of My, ..., M.
The problem becomes non-trivial when we allow the modules to have individual execution
times (called module weights), and require an explicit communication cost for mapping
M; and M;,, onto different processors. A processor’s time during the computation is
spent either exccuting a module, communicating results, or waiting for results so that it
can continue. Under any mapping there will be at least one “bottleneck” processor who
limits the computational rate. We scek the mapping which minimizes the execution and
communication time of the associated bottleneck processor. Bokhari gives polynomial-
time algorithms for optimally mapping a chain onto a linear array of processors, mapping
a chain onto a shared memory machine, and mapping a collection of chains onto a system
consisting of a central host with a number of attached satellite processors.

Bokhari solves these problemns with a layered graph. A graph node at layer ¢ describes
one possible assignment of modules to the tth processor. Layer ¢ has a node for every
possible assignment. Edges exist only between nodes in adjacent layers, and are always
rooted in the layer with smaller index. An edge leaving a node is labeled with the cost
of the associated processor assignment. Edges are defined so that every path through the
graph describes a legal mapping, and the edges on that path can be analyzed to give the
mapping’s cost. A least-cost path algorithm is employed to find the optimal mapping.
His algorithms map a chain onto a linear array in O(nm?®) time and space, onto a shared
memory machine in O(nm3logm)! time and O(nm?) space, and map a set of n chains
onto a host with n satellites in O(nm?logm) time and O(nm?) space.

The value of m can be quite large for applications whose modules are fine-grained. In
such cascs an O(nm?) algorithm is unattractive. This is especially true since the mathemat-
ical model we cmploy to assess a mapping’s cost is quite simple, and ignores architectural
details which may impact the accuracy of the model. Accepting that a simple mathe-
matical model of the mapping problem is still desirable, it is important then to find ways
to reduce the complexity of the approach. Igbal[7] does so by considering approximation
algorithms that find a solution guarantced to be within € of the true optimal. Letting Wy
denote the sum of all module weights, his method finds the minimal approximate solu-
tion to the linear array problem in O(nm log(Wr/¢)) time, to the shared memory problem
in O(m?log(Wy/e¢)) time?, and to the host-satellitc problem in O(nmlog(Wr/e)) time.

VAll logarithms in this paper are base 2.
2Igbal incorrectly claims O(m log(1V7/¢€)) for this solution.

These methods are attractive alternatives to Bokhari’s, provided the user can accept the
possibility of failing to find the precise optimal solution. Another drawback is that the
complexity of Igbal’s method is sensitive to the actual values of the module weights and
on the degree of accuracy desired.

Bokhari’s methods and Igbal’s methods both rely on a “probe” function which finds an
optimal solution, subject to some constraint. The probe function is repeatedly called, vary-
ing the the constraint, until an optimal solution is discovered. In § 3 we outline Bokhari’s
solutions, and show how they are all easily improved by a factor of m by reducing the
complexity of his probe function. We then examine each problem, and show how to reduce
the complexities of their respective probe functions, how to reduce the cost of organizing
the set of probe calls, and how to achieve low expected parallel time complexities by ex-
ccuting the mapping algorithms on the target architectures. These algorithms’ expected
complexitics are based on the assumption that all module weights are independent samples
of a common unspecified distribution, and that all communication delays are independent
samnples of a different unspecified distribution.

In § 4 we reduce the time complexity of Igbal’s probe function from O(nm) to O(n logm).
The improvement requires only the additional assumption that communication costs are
bounded. Then we exploit the problem’s structure and reduce the cost of organizing
the probe search values from O(m?logm) to O(mlogm). The resulting algorithm has
O(nmlogm) time complexity and O(m) space complexity. Finally, we organize the algo-
rithm for execution on the linear array itself. The parallel algorithm has an O(m logm logn)
time complexity, and O(nm) space complexity.

In § 5 we reduce the time complexity of a probe function based on Kernighan’s algorithm(8]
from O(m?) to O(mlogm). Coupled with the search organization developed for the linear
array problem, we reduce this problem’s time complexity from Bokhari’s O(nm?logm) to
O(m?logm). Our algorithm has O(m?) space complexity. We then parallelize our solu-
tion in three ways. One method achieves an O((m?/n)logm logn) time and O(nm) space
complexity; a sccond achieves an O((m?/n)logm) time and O(m?) space complexity. The
third is appropriate when 8n® < m, and has an expected O((m?/n)logm) time and O(m)
space complexity.

Finally, in § 6 we use the results of § 4 to reduce the solution time complexity from
Bokhari’s O(nm?log m) to an O(max{nm logn,nlog’? m}) time complexity. Our algorithm
has O(nm) space complexity. We then parallelize the algorithm for execution on the host-
satcllite architecture. When m is sufficiently larger than n the parallel algorithm has an
O(nm) time complexity which is within a constant factor of optimal when the problem is
loaded serially.

The trade-offs between communication costs and load balance have recently been ad-
dressed by a few researchers. Berger and Bokhari in [2] propose and analyze binary dissec-
tion of a two-dimensional domain with irregular workload. The solutions they construct
need not be optimal. A similar problem for finite-element solution methods was studied
by Sadayappan and Ercal in [13]. Cventanovic in [6] examines mapping, communication,

and grainularity issues in an abstract setting. Foundational work for the parallel mapping
problem was laid by study of the distributed mapping problem. The seminal works in
this field include papers by Stone [17],[16); by Bokhari [5], and by Towsley [18]). Bokhari
summarizes much of this work in [3].

2 Model Definitions

We suppose that a computational problem has been decomposed into m modules My, ..., M,,.
These modules may be defined by function, e.g. fast fourier transform, convolution; they
may also be some partition of a data domain, as in the solution of partial differential
equations. We imagine that one execution of M, needs data from M;_,, M;,,, or both. We
supposc that a module M; will be executed many times, each execution requiring w; > 0
time on one of a sct of n homogencous processors; the modules are concurrent because
cither results are being pipelined, or the modules are loosely synchronized and exchange
the necessary data at the conclusion of every iteration. Our expected complexity analysis
will assume that each w; is drawn independently from a common distribution having finite
wmean i, and standard deviation o,,.

We are interested primarily in situations where m is large and n € m, e.g., n = 10
and mn = 1000. One reason for this focus is that algorithms we develop are somewhat
more complex than existing ones; for small m the existing algorithms are likely to be fast
cnough for practical use; conversely, for large m they are impractical. A second reason
is that using the parallel processors to compute the mapping of another computation
imposes additional overhead, and becomes an attractive option only if the problem size is
large enough to overcome that overhead.

At the end of M;’s execution period there is data available for consumption by M;_,
and/or AMiy,. If one of these modules (say M,_,) is assigned to the same processor as M;,
we assuimne that the next invocation of M;_; can access that data without additional cost.
If one of these modules (say M,y) is assigned to a different processor, then M;’s processor
must explicitly send data over a communication channel, and we will say that the logical
link between M; and M;,, is ezposed. The cost of that communication is assumed to
depend on the communicating modules. Exposing the link between M; and M4, causes
both modules to incur a delay cost C; > 0 which models all overhead a processor suffers in
sending and receiving messages over that link. We make the reasonable assumption that
('; < C for some constant C which is independent of m. Our expected complexity analysis
assumes that cach € is drawn independently from a common distribution having finite
mean p. and standard deviation o,.

We let S;, = 1, wi denote the sum of module weights on the subchain delimited by
M; and M;. S;; is a single processor’s module evaluation time cost of being assigned the
subchain. The incorporation of the associated delay costs C;_; and C; will depend on the
architecture considered, as shown below.

Lincar Array: Consider a lincar array of processors Py, P, ..., P,; processor P, has a
direct communication link with only processors P;_; and P, ;. We assume that a processor
is not free to procced with computation if it is actively engaged in communication. If
modules M; through M; are assigned to processor P, then P;’s ezecution time during one
itcration is Ci_; + Si; + C;. The cost of a complete mapping is the maximum processor
execution time among all processors; we have called the processor defining this maximum
the bottleneck processor. If the system we map is a pipeline, then the bottleneck processor
limits the rate of results, and the mapping cost is the time required to obtain one result
from a full pipeline. If the system is parallel rather than pipelined the mapping cost is the
time required by cach iteration. In either case we optimize performance by minimizing the
mapping cost.

Shared Memory Machine: Consider a collection of identical processors that commu-
nicate through a shared memory. The communication medium is a shared resource, so
that it i1s appropriate to model communication overhead by adding the costs of all exposed
links. The cost of a mapping is the maximum of (i) the sum of all communication costs
on exposed links, and (i) the maximum processor module evaluation costs under the as-
signment. This modecl presumes that communication can be overlapped with computation,
but that the communication medium serializes the communication traffic.

Host-Satellite Machine: Consider a powerful host machine which has n satellite pro-
cessors. This arrangement might be appropriate when there are n sensors with attached
niicro-processors. There is a chain-like pipelined computation associated with each satel-
lite. Without loss of generality we assume that the chain for satellite P; has m modules,
M,,..., M;,. Satcllite P; can unload some subchain M;; through M;, onto the host at
the cost of an inter-module communication C;; which is suffered by both host and satellite
(keeping the whole subchain on the satellite gives a communication cost Cigpm41)). Unload-
g work onto the host also has the effect of increasing the host’s computational load. The
host’s cost of a mapping is the sum of (i) any load it must always perform, e.g. combina-
tion of fully processed sensor data, (ii) the sum of module execution times of all satellite
modules it has received, and (iii) the communication costs associated with each satellite.
A satellite’s execution time is its module evaluation costs plus its host communication cost.
An assignment’s cost is the maximum of host cost and maximal satellite execution cost.

The following section sketches Bokhari’s approach to solving these mapping problems,
and points out an casy improvement to his algorithms.

3 Layered Graph Path Algorithms

Bokhari solves the lincar array problem by finding the minimum path through a specially
created layered graph. The graph has a source node < s > and a sink node < t >. Each
layer corresponds to a processor. Layer i contains a node for every legal means of assigning
modules to processor i. For examnple, node < j,k >> at layer 7 represents the assignment

N
<11> <1,2> <1,3> <1.4> <155 <1,6> <1.7>

X~

- <2,2> <2,3> ----- <3,3> <«3,4> <3,5> ---

- <3,8> ----<4,6> <4,7> <4,8> <55> ---

- <4,9> <59><6,9> <7,9> <8,9> <9,9>

NW

<t>

Figure 1: Layered Graph for Linear Array Problem, 9 modules, 4 processors

of modules M; through M} to processor i. Each layer contains O(m?) nodes. An edge is
directed from node < j,k > in layer 7 to any node of the form < k+ 1,/ > in layer ¢ + 1.
< s > directs an edge to every node at layer 1, and every node in layer n directs an edge to
< t >. Consequently, any path from < s > to < ¢t > corresponds to an assignment which
satisfies the contiguity constraint. Figure 1 illustrates Bokhari’s own example; while an
assignment path is shown, many edges are not shown in order to relieve visual congestion.
The layered graph assumes that every processor receives at least one module. '
An edge out of node < j, k > at layer ¢ is labeled with the value C;_y + Sjx + Cx.
It is possible to include a dependence on i here to model heterogeneous processors and
communication links; for simplicity we assume homogeneity. The cost of a path is the
value of the maximally weighted edge on the path, which clearly is the time required by
the bottleneck processor to solve its portion of the problem. A standard least-cost path
algorithm finds the optimal mapping in O(graph edges) time, in this case O(nm?).
Least-cost paths through laycred graphs are also at the heart of Bokhari’s shared-
memory and host-satellite problem solutions. Here he develops a general technique of
analyzing Sum-Bottleneck graphs. An edge e on such a graph has a sum-weight and a
bottleneck-weight. The cost of a given path through the graph is the maximum of (i)
the sum of all sumn-weights on the path’s edges, and (ii) the maximum bottleneck-weight
among the path’s edges. The path with minimal cost is found by first identifying all

unique bottleneck-weight values, and by sorting them. Then a binary scarch on the list
of bottleneck-weight values is performed—for each bottleneck-weight value b visited, a
shortest path routine TESTPATH(b) is called. TESTPATH(b) treats any edge whose
bottleneck-weight value is greater than b as non-existent. If there is a path from source to
sink on this edge-reduced graph, then TESTPATH(b) returns the path whose sum of sum-
weights is minimal. If there is no path betwcen source and sink TESTPATH(b) returns
the null path whose cost is defined to be co. Defining S(b) to be the length of the path
returned by TESTPATH(b), the binary search seeks the smallest bottleneck value b such
that b > S(b). The optimal sum-bottleneck solution is then either b or S(b), where b is the
greatest bottleneck value less than b. For each of the layered graphs considered a call to
TESTPATH(b) has complexity O(graph edges).

The sum-bottleneck graph for the shared-memory problem is topologically equivalent
to that for the linear array problem. An edge directed out of node < j, k > is labeled
with bottleneck-weight S;; and sum-weight C;. Each call to TESTPATH has complexity
O(nm?); the algorithm’s O(nm?3logm) complexity follows from the observation that there
are O(m?) unique bottleneck values, and hence O(logm) calls to TESTPATH.

The sum-bottleneck graph for the host-satellite problem again associates a layer with
a processor. Node < j > at layer i represents the mapping of satellite P;’s first § modules
onto the satellite, with the remaining modules being mapped onto the host. A node at
layer i directs an edge to every node at layer : + 1. An example of this graph is shown in
figure 2. The bottleneck weight on an edge directed out of node < j > in layer 7 is the sum
of weights of modules M;; through M;;, plus the communication cost C;;. The sum weight
on that edge is the sum of Mj(;;,) through M, weights with the communication cost Cj;.
To account for an initial host load H, every edge directed out of the source node has a
sum weight of H and a bottleneck weight of zero. Each call to TESTPATH has O(nm?)
time complexity. There are possibly nm unique bottleneck values, giving a O(nm? logm)
overall complexity.

The least-cost path algorithm underlying these solutions exploits the fact that the graph
is layered—for node v at layer ¢, the least-cost path from the source to v, through node u
at layer i — 1 must include the least-cost path from the source to u. In fact, this is just a
statement of the principle of optimality. The algorithm finds the least-cost paths from the
source to all nodes at layer : — 1 before computing any least-cost path to a node at layer
t. The least-cost path to v is found by examining every u which directs an edge to v and
then extending the least-cost path to u with the u — v edge. The least-cost extension is
the least-cost path to v. As we have previously stated, the complexity of this approach
is proportional to the number of graph edges. A simple trick will reduce the number of
graph edges without affecting path costs. For the linear array and shared memory problem
graphs we add n — 2 layers, one between each of the previous layers (except between layers
1 and 2 where an additional layer provides no benefit). Each new layer has m nodes,
labeled 1 through m. To avoid confusion we will refer to the “ith” layer in the new graph
as being identical to the ith layer in the original graph. Node < j,k > in layer ¢ directs a

Figure 2: Layered Graph for the Host-Satellite Problem

single edge to node < k > in the new layer between layers ¢ and ¢ + 1; this edge is labeled
exactly as before. Node < k > in the new layer in turn directs an edge to every node of
the form < k + 1,1 > in layer ¢ + 1; every such edge is labeled with weight zero. Figure 3
illustrates the new graph. Again, many nodes and edges are not shown in order to avoid
congestion. It is clear that any path fromn source to sink still defines a legal assignment and
has a weight identical to that of the corresponding path in the original graph. The number
of edges drops from O(nm3) to O(nm?), reducing the complexity of both the linear array
and shared memory problems by a factor of m.

We treat the host-satellite assignment graph similarly. Between layers we interpose a
single node. Every node at layer ¢ directs a single edge to the node between layers : and
¢ + 1; the edge is weighted as before. The node between layers ¢ and ¢ + 1 directs an edge
to every node in layer i + 1. The two weights on cach such edge are zero. Once again,
every path identifies an assignment and its cost; by reducing the number of graph edges
by an order of m we reduce the algorithm’s cost by an order of m. This same trick can be
applied to the algorithms in [5]) and [18])°.

Bokhari docs not discuss parallelization of his methods on the target architectures.
Even after iinprovement, his linear array solution is very ill-suited for parallelization on
the array. A natural approach is to partition the solution graph, and require every proces-

IPrivate communication from Shahid Bokhari

<S>

<}w<1, > Processor 1

<2,2> <2,3> <2,4> ----<3,3> <3,4> --- Processor 2

N NS

<2> <3> <4: <5> <6> <7>
/\ \ —
<3,3> <3,4> ---<44> <4,5> ---15_,5> --- Processor 3

<3> <4> <5> <6> <7> <8> New Layer

|\

<4,9> <5,9> <6,)9> <7,9> <8,9> <9,9> Processor 4

W

<t>

New Layer

Figure 3: Improved Layered Graph for Linear Array Problem, 9 modules, 4 processors

sor to compute the least cost path to the nodes it is assigned. The computation proceeds
in stages—find the least-cost paths to layer 2 nodes, then layer 3 nodes, etc. It is not
difficult to see howcver that the communication requirements of this approach are enor-
mous: there is communication across at least one link for every graph edge cut by the
partition. Furthermore, if the nodes are distributed evenly among processors, then 2(m?)
values will have to be broadcast between each of n — 1 steps. The communication complex-
ity alone is cquivalent to the complexity of a serial solution. The method just described
might work well on a shared memory machine, provided that the number of processors is
small, and that the communication network is fast relative to the processor speeds. The
cost model assumes serialized communication, so again we have an O(nm?) communication
complexity. These observations also apply to a host-satellite system if the satellites in a
host-satellite system can communicate through the host’s memory.

If we have a computation which is decomposed into a very large number of modules,
and if we desire to take advantage of the parallel hardware our mapping methods tar-
get, then Bokhari’s methods leave room for improvement. In the following sections we
discuss improved serial algorithms, and give parallel mapping algorithms based on these
improvements.

4 Linear Array Problem

Bokhari’s method for solving the linear array problem does not rely on a probe in the
same way that his shared-memory and host-satellite solutions do. Our approach is based
on Iqbal’s[7], who developed a probing approach for finding an approximate solution.
Like Bokhari’s sum-bottleneck method we will probe the space of bottleneck values. Our
improvernents stem from increasing the efficiency of the probe method, and from exploiting
the problem structure to avoid the cost of sorting all bottleneck values. The subsections
to follow discuss these improvements, show how to parallelize the algorithm for execution
on the linear array.

4.1 An Improved Probe Function

Our method is based on Igbal’s probe function PROBEI1(w), which is shown in fig-
ure 4. PROBE1(w) determines whether it is possible to assign the workload so that
every processor’'s execution time is less than or equal to the bottleneck constraint w.
PROBEI1(w) iteratively chooses a feasible subchain load for the “next” processor. Given
that a processor’s subchain begins with module M;, PROBE1(w) finds that j such that
(1) 2i; = Ci_1 + Si; + C; < w, and (ii) the remaining unassigned load A; = C; + Sj4+1)m
is minimized. Igbal proves that this rule will find an assignment whose cost is no greater
than w, if one exists.

In the worst case, for every processor assignment PROBE1(w) will consider making
module M; (5 > n) a subchain right endpoint. PROBE1(w) always considers making M;
an endpoint on every iteration where M; is still unassigned. This gives PROBE1(w) an
O(nm) complexity.

Consider the problem faced by the inner loop of PROBE1(w): among all j € [i,m]
such that Q;; < w, find the j, minimizing A;. PROBE1] examines the entire interval
[1,m] for this point; instead we appeal to the problem’s structure and quickly find a small
subinterval [Kmin, kmax] which must contain jmin.

Define the functions A;‘l = S5;;+ Cj, and w(z) = w — Ci_y + Sy(i-1) and note that

Cioi + Sij + C]' <w = 51(,-_1) + S,'J' + Cj <w-Ci_1+ 51(,'_1)

or equivalently,
Q; <w & A;] < w(z).

If we can find the largest j such that A;l < w(z) we will have found the largest j such that
2;; < w. Let kp,y denote this upper bound. k., can be quickly found with a pre-computed
array right_min, whose jth entry equals k if the minimum value of A~! over [j, m] occurs
at position k. right.min is computed once in O(m) time, and is thercafter employed by
every probe call. A;;M _min(j) Re€cessarily increases monotonically in j. Given w and 7, kmax

is simply the greatest index j greater than or equal to ¢ such that A:i;h,_m,-n(]-) < w(i). If

Definitions

Wr Sum of all modules weights: Wz =Y, w;
2;; Processor cost if assigned subchain M;,... M;
Q; =Ci1 + Si; + Cj;
A; Total “remaining” load after assigning M;: A; = C; + XL, w;

function PROBE1 (w) :Boolean;

{
t=1p=1k =0; Apin = Wr;
while p < n do

{

for j=itomdo
if Q,‘j <w and AJ' < Anin then

{

Assign subchain M, ..., M} to processor p;
if £ = m then return(true);

i=k+Lp=p+1;
}

return(false);

Figurc 4: Igbal’s probe function

kmax €xists, it can be found in O(logm) time with a binary search. If the search fails to
find a feasible solution then no solution exists.
Having found kuax we can find the lower bound k.. Note first that
Akmax = Ckmax + S(kmu+1)m'
necessarily increases, and eventually exceeds Cy,,,. We choose kmin

As j decreases, S;

km&x

11

to be the largest j where this occurs. For any j < kpy, we have

A] = C] + S(j+])kmax + S(kmax+l)m > Ckmax + S(kmax'l")m = Ak

max °

Consequently, any j < kg, may be ignored as a solution. If k., < 7, we take kpy, = 1.

Since S, must increase as j decreases, kmin can be found with another binary search,
on the “virtual array” Sikp,..:-- s Skmaxkma- Note that for any ij, Si; = Si; — Sii-y), so
that S;; can be computed in constant time if the Sy;’s are pre-computed. This means that
the virtual array need not be explicitly computed, and the search for k., requires only
O(logm) time.

A linear scan for feasible points in [kmin, kmax] Will find the feasible point minimizing
A. Since we have assumed that the communication costs are bounded from above by some
constant independent of m, the lincar scan takes O(1) time. Figure 5 presents pseudo-code
describing this new O(nlogm) probe function PROBE2(w). Note that a returned value
of falsc occurs only if for some processor there are no feasible assignments. Like Igbal’s
probe, PROBE2 will return true if a feasible mapping is found which uses fewer than n
Processors.

4.2 Improved Search Organization

At this poiut we could simply sort the O(m?) unique processor loads, and find the smallest
feasible one with O(log m) calls to PROBE2. This algorithm’s complexity is dominated by
the O(m?logm) complexity of sorting. To further improve the probing approach we will
have to reduce the cost of organizing the search. We do so by replacing the O(m?logm)
cost of finding O(log m) probe values with an O(m logm) cost of finding O(m) probe values.
Because the probe calls are cheap, increasing their frequency to avoid a sort improves the
overall performance.

For the moment, assume that all communication costs are zero so that every processor’s
execution time is of the form §;;. Furthermore, we extend the definition of S;; to allow
1>

Si = 815 — Si(i-1).-

This definition encompasses the earlier one, and also shows that S;; can be computed in
constant time if all sums of the form Sy are known.

We are able to infer that some execution time weights are larger than others, regardless
of the module weight values. In particular, S;; < Si whenever j < k, and S;; > Si;
whenever @ < k. This partial ordering is illustrated in figure 6 with a dominance matriz.
Row entries ascend in value from left to right, column entries descend from top to bottom.
By transitivity it follows that S;; < S,, whenever 1 > u and j < o.

We will call any contiguous portion of a row a strip. On any given strip we can use
binary search and a probe function to identify the entry with smallest execution time
weight that satisfies the probe. This observation allows us to eliminate large portions of

19

-

function PROBE2 (w) :Boolean;
{
t=Lip=1;k=0;
while p < n do
{
Amin = WT;
w(i) =w—Ci_y + Sy
Use binary search to find kpax: the greatest j
such that Aighe_ming) < w(2);
If no such k. exists return(false);
Use binary search to find knn: the greatest 7 < kmax
such that S;z. .. > Crouss
for j = ki to ki do
if Q;; <w and Aj; < Apin then
{
Am;n = Aj;
k=j;
}
Assign subchain M, ..., M} to processor p;
if k = m then return(true);

i=k+Lip=p+1;

Figure 5: Improved Probe Function for Linear Array Problem

the search space. Consider a rectangular region of the dominance matrix that is h entries
high and ! entries long. Consider the effect of doing a binary search on the strip which best
biscets the rectangle into equal sized pieces. Let S;; be the minimal feasible strip entry
found by the scarch. Any S,, with u <7 and v > j lies above and to the right of S;;; any
such entry dominates S;; and may therefore be discarded as a solution possibility. Any
Szy with £ > 7 and y < j lies below and to the left of S;;; any such entry is dominated by
the value S;;_y) which is known to have failed. Such entries may also be discarded as a
solution possibility. Since the strip bisects the rectangle into equal sized pieces, one half
of the rectangle’s entries are eliminated by the binary search; the remaining entries fall
into no more than two regions which are again rectangular. These points are illustrated
graphically in Figure 7. In order to find the minimal feasible solution within the rectangle

13

Sll 512 513 514 515 516 Sl7 SIS 519
521 522 523 524 525 526 527 528 529
531 532 533 534 535 536 537 538 539
541 542 543 544 545 546 547 548 549
551 552 553 554 555 556 557 558 559
561 562 563 564 565 566 567 568 569
571 572 573 574 S75 576 577 S78 579
581 582 583 584 585 586 587 S88 589
591 592 593 594 595 IS’96 597 598 599

Figure 6: Dominance Matrix of S;; values

it suffices to apply this procedure recursively to the remaining rectangles. The recursion
stops when a rectangular region consists only of a strip; then a binary search finds the best
feasible strip solution, if one exists.

The efficiency is enhanced if throughout the search we maintain variables V; and V.
Vs records the largest execution time tested so far which failed the probe test, V; records
the smallest execution time tested so far which satisfies the probe. If the search procedure
calls for a value V to be tested, the probe function needs to be called only if Vy <V < V.
If the probe is called, either V; or V; will be updated, depending on the probe outcome. At
the end of the scarch procedure V, contains the minimal mapping cost. If the associated
mapping has not been saved, a last call to PROBE2 will create it.

The lattice search technique calls the probe function more often than a binary search
over a fully sorted sct of bottleneck values, but avoids the high cost of sorting that set. Its
utility rests in that it calls the probe function only O(m) times, a fact we now demonstrate.

Define a rectangle evaluation to be the process of choosing a strip on a given rectangle,
finding the minimum strip value satisfying PROBE? (if any), and identifying the smaller
rectangles, called children, which must also be evaluated. It is helpful to view the search
process as a sequence of steps, where step 0 is the initial rectangle evaluation on the entire
matrix. Step 1 consists of evaluating all children of step 0. In general, the ith step is
composced of all evaluations of children defined by the previous step. We will say that a
matrix cntry is active at the beginning of the ith step if it lies within some rectangle that
1s evaluated during the :th step. We will also say that an entry is evaluated during the ith
step if it lies on a strip over which a binary search occurs during the ith step. An evaluated
entry need not actually be touched by the search. Three observations are key.

e Tle number of active entries in any matrix column decreascs by one half every step.

e The total number of evaluated entries during any step is no greater than m.

14

Dominance Matrix

region dominates known solution

N "3
O O O KR
N
AN
Ry
strio searched O O O RO L Feasi .
d st Ty R east Feasible Solution
secon slep- ¢ A/’r’z”%””%””" R p .
v IOy ANQ on Strip
(W o CARZAA AR SARARAIAAfLAR U Nt
Y o

s A
LL A
s,/
7/ LA

LY
LAl
LA
AR

ANNNS

57

]
1 strip searched first step
L}

s strip searched

! second step

o

region dominated by infeasibie solution

Figure 7: Lattice Search Method

e The maximum number of rectangles which are evaluated at step 7 is 2'.

To sce that the first point is true, consider any column in an evaluated rectangle. If the
point found by the binary search lies in the column, or in one to the left, then only the
lower half of the column entries are left active. If the point lies to the column’s right,
then only the upper half of the coluinn’s entries are left active. The second point follows
from the observation that during a step, no two evaluated rectangles overlap in any row or
column coordinates. If we sum the horizontal lengths of all evaluated rectangles the result
is exactly m. The third point is obvious, since any rectangle evaluation spawns no more
than 2 children.

From the first point we infer that there are no more than logm steps in the search.
The number of PROBE2 calls required is the sum of calls by the binary searches involved.
Because of the concavity of the log operation, the number of calls at a step is maximized
when there are as many binary searches as possible, over short lists. A binary search on a
list of k items requires no more than logk+ 1 probes. There are no more than m evaluated
points at a step, and no more than 2* binary searches. The number of probe calls at a step
m/2') + 1). By summing over all steps, we

of &

is consequently bounded from above by 2*(log(

15

find the number of PROBE2 evaluations to be bounded by

logm . . logm) log m) log m ‘
Y 2(log(m/2') +1) = logm) 2°— Y i2' ¢ > 2
=0 1=0 =0 1=0
< 4m.
logm

The evaluation of ¥°;2" 12" is accomplished using a general formula found in [9]. At the
cost of adopting O(m) probe calls, we avoid the cost of a full sort. There is a payoff.
O(m) calls to an O(n logm) probe gives an O(nm logm) algorithm, over the O(m?log m)
alternative.

This scarch technique relies heavily on the lattice-like partial ordering of the dominance
matrix. Redefining the dominance matrix by replacing each S;; with Q;; = C;_; + S;; + C;
destroys that partial ordering. However, a similar ordering can be discovered in O(m logm)
time with the following observation:

C0+Slj+Cj<Co+Slk+Ck (=4 Slj+Cj<Slk+Ck
& S;+C;< S+ Cy
& Cioi+ S,'j+Cj < Ci_y + Si + Ch.

If we were to label cach matrix element with its rank within a sorted row, the implications
above say that within a column all such labels are identical. A similar observation holds
if we label elements with their column sorted rank. By sorting the first row we can create
an array 7 where 7(2) = j if the ith smallest element of a row is found in the jth column.
Likewise, by sorting some column we can create an array p, where p(7) = j if the ith largest
clement of a column lies in row j. p and 7 are created once in O(mlogm) time. Imagine
now that we create a sorted dominance matriz by physically re-arranging the dominance
matrix columns so that the rows are ordered, and physically re-arranging the rows so that
the columnns are ordered. The sorted matrix has the desired lattice like partial ordering.
We can use the same search technique as before on the sorted matrix. It is not necessary
though to create the sorted matrix. Whenever we need to access the ¢j element of the
sorted matrix, we create the p(:)7(7) clement of the dominance matrix.

The O(mlogm) cost of creating 7 and p is masked by the O(nm logm) cost of calling
PROBE2 O(m) times. The overall complexity is again O(nmlogm). Even lower complex-
itics are possible if we employ the linear array itself to solve the mapping problem.

4.3 A Parallel Approach

One approach to parallelizing our serial algorithm is to call the same O(m) probe values
as the serial algorithin, using the linear array to compute PROBE2 in parallel. The
only opportunity for parallelism here is to parallelize the search over [Kmin, kmax], and
then combine the individual minimums found by tlie processors. It takes each processor
O(logm) time to find the interval endpoints, constant time to find a minimum over its

16

designated subregion of the interval, and then Q(n) time to find the global minimum.
Asymptotically we lose with this scheme: the complexity of a single PROBE2 call is
O(nlogm + n?).

A different approach is to have each processor perform a set of PROBE2 calls indepen-
dently, and in parallel with other processors. The strategy we propose is to decompose the
implicitly sorted dominance matrix into n regions which are assigned to the processors.
Each processor probes its space to find the optimal assignment within that space; an O(n)
time combination of results finds the optimal mapping.

We assume that cvery processor has enough memory to solve the problem alone. The
module and communication weights are initially loaded into*the processors. Each processor
serially computes its own copy of all sums of the form Six, its own copy of the right_min
array, and its own copy of 7 and p. Each processor is now in a position to probe some
region of the bottleneck space. The geometry of the regions we choose has an impact
on the complexity. An analysis similar to the one presented for the serial case shows
that the number of probe calls required to evaluate an h x ! (where h < I) rectangle is
O(h + hlog(l/h)). Under the constraint that k- [is constant, it is not difficult to see that
we want to make h as small as possible. The optimal approach is to assign each processor
a (m/n) x m region of the sorted dominance matrix. The parallel time complexity is then
the sum of an O(mlogm) cost to load the problem and create auxiliary data structures,
an O(mlogmlogn) cost to perform the searches in parallel, and an O(n) cost to combine
the processor’s individual optimal solutions. The O(m logmlogn) cost dominates.

5 Shared Memory Problem

Our approach to the shared memory problem again uses a probe. We first show how to
reduce the cost of a probe based on Kernighan’s algorithm [8)] from O(m?) to O(m logm).
We then adopt the same search strategy as we did for the linear array problem and achieve
an O(m?logm) time algorithm. Finally, we discuss three approaches for parallelization.
One approach divides the sorted dominance matrix into regions which are searched in par-
allel. This approach yields an algorithm with an O((m?/n)logmlogn) time complexity,
and O(nm) space complexity. A second approach uses a parallel sort, and then serialized
binary search and probe calls. This algorithm reduces the expected time complexity to
O((m?/n)logm), but increases the space complexity to O(m?). Our third approach par-
allelizes the probe function, and is appropriate when n « m. Under technical conditions
on n and mn, its expected time complexity is O((m?/n)logm), and its space complexity is
only O(mn).

5.1 An Improved Serial Solution

Igbal's approximation method cites an algorithm described by Kernighan[8]. The algo-
rithm partitions a chain of modules, subject to the contiguity constraint, and also subject

17

to the constraint that the sum of module weights in any partition is less than some fixed
and pre-determined value w. The cost of a partitioning is the sum of the costs of links
exposed by the partitioning. He formulates this problem using dynamic programming, and
solves the optimality equations

V() = 0

V(i) = C;j+ ;réin {Vi-1)} forj=1,2,...m.
i<j
S.‘,S‘w

V(j) can be interpreted as the minimal cost of partitioning modules M; through M;,
including the cost of separating M; from Mj4;. Once V(m) is determined the solution is
found by backtracking. If 7 defines V(m)’s min term, then 5 + 1 is the left endpoint of the
rightmost partition; if ¢ determines V(7)’s min term, then i + 1 is the left endpoint of the
next partition, and so on.

This function can be used as a probe. If the chain can be partitioned into n or fewer
picces subject to the partition loading constraint, then the partition defines a feasible
mapping; furthermore, it minimizes the sum of communication costs among all mappings
with processor loads less than w. The probe compares the sum of communication costs
with the probe constraint w; if that sum is smaller, and if n or fewer partition elements
are defined, it returns the value “true”. So long as w is kept fixed for all problem sizes this
solution has O(m) complexity. However, we vary w with every call to the probe function.
In the worst case w is Wy, the sum of all module weights, and the algorithm is O(m?).
Iqbal missed this fact, and in [7] ascribes an O(m) complexity to this algorithm.

Kernighan’s trecatment considers w to be constant, so that the min term for every V(j)
can be determined in constant time with a linear scan. Since our w’s will vary and may
bhecome quite large, we need to avoid linear scans. The min term can be efficiently found
with the aid of a search tree which organizes domain points on the basis of their V' values.
The tree initially contains a single record corresponding to the boundary condition V(0) =
0. A pointer where.13(0) to that record is stored to aid a future deletion. Subsequently,
we compute each V(j) by first identifying the indices over which its min term ranges. The
minimal index 7,,,;, satisfying S;; < w can be found with a binary search on Sy;, Sp;,...,S;;,
and the where_is pointers are used to remove all tree records for V(7) with ¢ < i,;,. The
scarch tree is then examined for the entry whose key is least; this entry defines V()’s min
term. V(j) i1s computed by adding the min term and C;. A record representing V(j) is
inserted into the tree, and the pointer where_is(j) to that record is saved. The auxiliary
value back_ptr(y) is set equal to the index of the position defining V(j)’s min term.

O(m) tree insertions and deletions costs O(m log 1n) amortized time using splay trees[15].

The improved probe function can be used in conjunction with the search strategy
described for the linear array problem. Note that a dominance matrix with S;; type
entrics suffices. Letting S(b) denote the minimized sum of communication costs with b
as bottleneck constraint, recall that at the termination of the binary search we will have
determined the smallest bottleneck value b such that b > S(b). The optimal sum-bottleneck

18

solution is then cither b or $(b), where b is the greatest bottleneck value less than b. Since
b may be the solution we scek, it is important to be able to access it quickly. Suppose
that throughout the search we maintain a value V,,, the smallest bottleneck value larger
than V, (the least known feasible solution). We claim that b must either be the value
of V, at the end of the search, or be adjacent to b’s location in the sorted dominance
matrix. The claim is established by contradiction—suppose that b is not V, and is not
adjacent to b. b is eliminated from consideration as the smallest bottleneck exceeding its
associated communication cost in one of two ways. b may be eliminated because a smaller
bottleneck value satisfies the probe. This bottleneck value can only be b, and would have
to be adjacent to b, a condition we have assumed does not occur. b can also be eliminated
if a larger bottlencck value fails the probe. However, this is impossible because b itself
passes the probe. This establishes the contradiction, and thus the fact that given b and
V.., b can be found in constant time.

The cost of O(m) probe calls, each with complexity O(m logm), is O(m?logm). Note
that this same complexity is achieved if we sort the O(m?) bottleneck values and call the
probe O(logm) times. However, the former approach needs O(m) space, while the latter
requires O(m?) space.

5.2 A Suite of Parallel Approachs

Three different approaches for parallelizing the algorithm suggest themselves. One mimics
our parallel linear array solution, and simply divides the dominance matrix into (m/n)xm
sized regions which are searched in parallel. Each region requires O((m/n)logn) probe
calls, a cost which dominates the cost of combining the various processors’ optimal so-
lutions. The overall time complexity of this approach is O((m?/n)logmlogn). Each
processor requires O(m) space.

A sccond approach is to compute and sort the O(m?) bottleneck values in paral-
lel. Techniques such as those described in [11], and [19] are appropriate, and have an
O((m?/n)logm) expected parallel complexity. A binary search over the sorted values
may then be employed, with a scrial probe. O(logm) probe calls are made, each with
O(inlogm) complexity. The resulting algorithm has an O(max{(m?/n)logm, mlog’ m})
expected parallel time complexity, but requires O(m?) space for the sort.

An O((m?/n)logm) expected time complexity with O(m) space requirements is possi-
ble in the event that 8n® < m. In this case we can effectively parallelize the probe function.
Our approach relies on the likelihood that if V(i) defines the min term for V(§), theni < j.
If V(7) does not depend on “necarby” values of V', then “nearby” values of V' can be com-
puted in parallel. Of course, if V(i) and V(j) are computed in parallel and it turns out
that V(7)’s min term should have been V(z), then we need to recompute V(7). We will
sce though that this occurs infrequently under our stochastic assumptions about module
and weight values. It should be noted that unlike the other complexities derived in this
paper, the magnitudes of the constants of proportionality are not obviously low. Without

19

further discussion on this topic, we note here that when the module weight distribution’s
cocfficicnt of variation o /u is low, then the constants of proportionality are low.

A general description of the algorithm follows. We divide the domain into successive
blocks By, By,...,Bp/n, of n consecutive points each. We will compute all values of V
within a block in parallel, assigning one processor per block point. The processors create
and combinc information describing the solution of V' in the block area, and check to ensure
that no value computed in the block depends directly on another value within the same
block. If such a dependency is detected it can be corrected with a serialized computation
of the block values. Once the block values are correct the processors move on to the next
block. The backtracking phase to find the optimal partition is serial. We turn next to a
more detailed description of this procedure.

The algorithin begins with every processor initializing its own search tree such as was
uscd in the serial version. The search tree may reside in the processor’s local memory. The
global memory will contain the V array. Processor P; then computes V(z). Since n € m,
it is unlikely that the probe weight w will be small enough so that S;, > w, and it is
highly likely that V(i) = C; is the correct value for V(7). The processors cooperatively
compute the minimum value m; = min; ¢i<,{V(?)}. It is well-known that this can be done
in logn steps with a combining tree as shown in figure 8(a). The entire tree is left in the
global memory. Note however that communication is serialized, implying that the cost of
building the tree is O(n). Figure 8(b) illustrates the fact that the minimum value of V over
the last k items of a block can always be recovered from the combining tree by examining
no more than logn entries. If S}, < w then m; is the minimum value of V over the first
block. Every processor inserts m; into its local search tree, and for the purposes of future
deletion records a pointer to its location.

The computation now proceeds in stages. The values for By are computed by the kth
stage with the following operations.

1. Serial Step: Note that B, consists of integers in [(k — 1)n + 1, kn]. We must first
determine whether it is feasible to compute all of By’s points in parallel. A necessary
condition for this is that the indices of V(kn)’s min term completely encompass Bj.
This is checked by determining whether S(x_1)n)xn) < w. If not, then we cannot
evaluate all of B,’s points in parallel. In this case we serialize the computation of
the block, and advance to the next block.

to

Parallel Step: Processor P; is responsible for computing V((k — 1)n + 7). P; first
uscs a binary search to find the left endpoint ¢min(5) of the indices over which its
min term is taken. P; then deletes from its search tree all entries representing blocks
including and lying to the left of 7,,;,(5). Let 7,(j) be the right endpoint of the block
containing #,un(7), and let v(j) be the minimum value of V over [t,nin(7), i-(3)]- vi(F)
can be found by examining the combining tree over ¢,;,(7)’s block.

3. Parallel Step : Processor P; finds the minimum value v,(j) within its own search

20

min over this range

O Elements to examine to find min

Figure 8: Combining tree to compute the minimum of n values

tree. Then P; computes V((k — 1)n+ j) = Cx—1)n4; + min{vi(5), v,(7)}, and records
in local memory a back_ptr value giving the index which defines min{vi(j), v,(3)}.

4. Parallel Step: The processors cooperatively compute the minimum value vy of V
over the current block, with a combining tree.

Serial Step: P, checks to sce if its current V' value is correct, by comparing V(kn)
with Ci, + vy. If the latter quantity is smaller, then the earlier computation was
incorrect. Because the range of V(kn)’s min term includes all of By, if any V com-
puted in By is incorrect, V(kn) will be incorrect and will be detected. When this
occurs, the block’s points are recomputed serially.

[41}

Over the course of the algorithm, an individual processor inserts, deletes, and searches
for m/n items in the search tree. Collectively this exacts an O((m/n)log(m/n)) amortized
time cost. In the absence of serialization, for each of m/n stages, step (1) takes O(1) time;
noting that communication is serialized, step (2) takes O(max{nlogn,logm}) time; step
(3) takes O(log(m/n)) time; step (4) takes O(n) time due to serialized communication, and
step (5) takes O(1) time. In the absence of serialization the overall complexity depends on
the relationship between m and n. If nlogn > logm, then the O(nlogn) cost of step (2)
dominates and the algorithm has an O(mlogn) cost. If nlogn < logm, then the O(logm)

21

cost of step (2) dominates, yiclding an O((m/n)logm) algorithm. As m grows we expect
that cventually the latter case will hold; for simplicity in exposition we assume that m is
sufficiently larger than n to give an O((m/n) logm) parallel time complexity in the abscnce
of serialization.

If the computation is serialized, a shared variable can indicate which processor is allowed
to compute its value. A processor proceeds as before, except that the minimum value of
V scen so far within the block must also be considered in step (3). Each point calculation
takes O(logm) time, so the entire block takes O(n logm) time.

Without serialization the parallel complexity of this probe is O((m/n)logm). Serial-
ization may occur at step (1) when w is too small in relation to n. Because the m modules
must be distributed over only n processors, we expect that each processor receives on the
order of m/n modules, and that the values passed to the probe tend to be from convolutions
of approximately m/n module sums. Intuitively then we see that serialization shouldn’t
occur often, provided that m is sufficiently larger than n. The subsection to follow shows
that if 8n® < m then serialization occurs so infrequently that the expected complexity of
the entire algorithm is O((m?/n)logm).

5.3 Expected Complexity When 8n® < m

If we can reduce the frequency of serialization to O(1/n), the contribution of serialization
to the algorithm’s overall complexity will be O((m?/n)logm) which is exactly the parallel
complexity. We will show that this occurs when m is sufficiently larger than n. We do so
in three steps. First we show that if w > 2nu,,, then the probability of serialization being
required at step (1) of the parallel probe is O(1/n). Secondly, we show that if w > n?u,,/2,
then the probability of serialization being required at step (5) of the parallel probe is also
O(1/n). Finally, under some simplifying assumptions we show that when 8n® < m, then
probe calls with w values less than n?u,,/2 occur so infrequently that the expected cost
due to serialization is only O((m?/n)logm).

Consider the parallel probe function. The first chance at serialization occurs in step
(1). Let pi(w) be the probability that the sum of n module weights associated with a
block exceeds w. We assume that every module execution time is drawn independently
from a common distribution with finite mean y,, and standard deviation o,,. Likewise, we
assume that the communication costs are independent and identically distributed, although
they are allowed to be from a different distribution. Our analysis rests on two facts from
probability theory.

o If X),X,,...,X are k independent identically distributed random variables with
mean ;¢ and standard deviation o, then the mean of the linear combination Zfﬂ a; X;

is 1% | a;, and the standard deviation is o/, a?.

o Chebychev’s Inequality If X is any random variable with mean g and standard

22

deviation o, and € is any positive number, then
1
Prob{|X — u| > ec} < w2

These facts may be found in any standard probability text, such as[10].

Let M(n) be an n-fold convolution of the module weight distribution. M(n) has mean
np,, and standard deviation o,,\/n. Serialization is chosen at step (1) if the sum of
the block’s n module weights exceeds w. Appealing to a slightly re-organized form of
Chebychev’s inequality we have

Prob{M(n) > np,, + eav/n} < }2

for any positive constant €. Choosing w = nu,, + €0,,1/n and solving for ¢, we have

pi(w) = Prob{M(n)> w}

= Prob{M(n) > nu, + eonv/n}
Nom
<

(w - n‘urn)2

whenever w > ny,,. If w > 2npu,, then the right hand side of this inequality is O(1/n).
We have proved the following theorem.

Theorem 1 Let py(w) be the probability of serialization at step (1). If w > 2nu,,, then
pi(w) = O(1/n).

Now let p,(w) be the probability that serialization is chosen in step (4). This occurs
when the min term of some V(j) is defined by some V' value in V(5)’s block. To show that
p2(w) = O(1/n) when w > n?p,, /2 we will need the following technical lemma.

Lemma 2 For every 3 =1,2,...,m let
L(j,w)={V() |1 < 5,S; < w}.
Then for all j and w, min L(j,w) > minL(j — 1, w).
Proof Suppose L(j — 1,w) = {V(3)),...,V(j —2)} and L(j,w) = {V(.),..., V(5 — 1)}

Note that 1; is necessarily no greater than z,. This linplies that
min{V(,),...,V(j — 2)} 2 min L(j — 1,w).

Now
L(]a w) = {V(iu)"' . ’V(J - 2)} U {V(] - 1)}

23

so that

min L(j,w) = min({V(¢y),...,V(j —2)} U{Cj_1 + min L(j — 1,w)})
> min({V(iu),...,V(j - 2)} U {min L(j — 1,w)})
= minL(j — 1,w).

a

The main purpose of lemma 2 is to aid in the proof of the following lemma.

Lemma 3 Let V(i),V(¢ + 1),...,V(i + N — 1) be a consecutive sequence of V wvalues.
Then the probability that the minimum value occurs in one of the last n sequence elements
i3 no greater than n/N.

Proof Let g; be the probability that V(¢ + j) is the minimum in the sequence. We first
show that

G=>q12... 2 qN-1-

Consider the module weights to be fixed, but let the communication weights be random.
Let J =< ¢, ¢i41,.--,CigN—1 > be any random vector sampled from the joint distribution
of the communication costs, and suppose that under this joint vector V(i + k) is minimum.
By lemma 2, minL(¢ + k£ — j,w) < min L(z + k,w) for all j such that 1 < 7 < k. Since
Vi+k—j)=minL(i+k— j,w)+ cipr—; > minL(i + k,w) + ciyx = V(i + k), we must
have ¢jypx—; > cipx. Suppose we swapped the costs c;4x and ci4x—;. The swap does not
affect any V(¢ 4+ k — 5) with j > 1, but clearly V(: + £k — 1) < V(¢ + k). Furthermore, any
V value to the left of V(2 + k — 1) is larger, because

minL(i+k—j,w)+ ciph—; > minL(z+k,w)+cipr =
minL(i + k — j,w) + ¢iyr—; > min L(¢z + k — 1, w) + Ciy-

Any value to the right of V(i + £ — 1) must also be larger—the min term for some values
V(i + k + j) to the right of V(i + k — 1) may change to either the new value of V(i + k)
or V(i + k — 1), but the new value of V(i + k + j) cannot be less than the new value of
V(i+k—1). Because the communication costs are independent and identically distributed,
the random vector which swaps the values ¢;yx_; and ¢4 in J has the same probability
mass or density as J. Consequently, for any random sample where V(¢ + k) is minimum
there is an cqually likely sample where V(i + k — 1) is minimum. As this is true for any
sampling of module execution weights, we must have

Q2412 ... 2 qN-1-

For any descending sequence of N values, it is always true that the sum of the last n
elements is no greater than n times the sequence average. The sequence average here is

24

1/N because the ¢;’s must sum to 1. The probability that the minimum occurs in one of
the last n positions is the sum of the last n sequence values, and consequently is no greater

than n/N.
O

At step (5) serialization is required at block By if V(kn)’s min term is defined by some
value in B;. Lemma 3 tells us that if L(kn,w) has N elements, then the probability of
scrialization is no greater than n/N. If we can keep the size of L(kn,w) on the order of
n?, then serialization occurs at step (5) with O(1/n) probability. The size of L(kn,w) is
a random variable which we call N*(w). py(w) is no greater than the expected value of
nE[1/N*(w)]. The theorem to follow bounds this expectation by O(1/n) in the event that
w > nun/2.

Theorem 4 If w > nu,,/2, then p(w) = O(1/n).
Proof

p2(w) = Prob{one of B;s V terms is minimum in L(kn,w)}
< nE[1/N*(w)] (1)

where the expectation is taken with respect to the distribution of N*(w). The function
f(x) = 1/z is decreasing, and is bounded from above by g(z), defined below:

(z) = 1 If1<z<n?/4
FEI= 4/n? If z > n?/4 '

Because g(z) > f(z) for all z, we must have E[g(N*(w)] = E[1/N*(w)]. Now N*(w) is
less than n?/4 only if the sum of n?/4 or fewer module weight random variables is greater
than n?y,,/2. The proof of Lemma 1 bounded a very similar probability using Chebychev’s
inequality. Applying the same methodology here, it can be shown that the probability of
N*(w) being less than n?/4 is O(1/n?), if w > n?u,,/2. We then have

Elg(N*(w))] = p,-ob{M(n2/4)>w}-1+prob{M(n2/4)gw}-ni‘2-
= 0O(1/n?)

Applying this to relation (1), the lemmma’s conclusion follows.
a

Theorems 1 and 4 tell us that if the probe weight w is large cnough then serialization
occurs infrequently. We next show that if m is sufficiently larger than n we can expect the
probe weights used by our algorithm to be large enoush to satisfy the theorems’ conditions.
A note of warning is in order. The results to follow relate to pristine convolutions of the
module weight distributions. The values of w chosen by our search procedure are indeed
sums of module weights, but the distribution of those sums are affected by the history of

25

the search behavior. For example, suppose we choose to probe with value S;;, found in the
upper left rectangle identified by the the first rectangle evaluation. S;; is not identically
distributed with a sum of j —¢+1 independent module weights. We know that the probe is
satisfied on S for some k > j—this was established by the first rectangle evaluation. We
also know that for some k > ¢, S;; fails the probe. The former observation tends to make
Si; “larger” probabilistically, because some portion of the chain it represents is involved
with sums known to succeed. Likewise, the latter observation tends to make S;; “smaller”
because the M to M; subchain weight must fail the probe. The affects of the search
bechavior on probe value distributions appear to be too complex to deal with analytically.
But because of the conflicting influences on the probe value distribution it seems likely that
these effects on the size of the probe values are second order compared to the effects on
pure module weight convolutions of increasing the size of the sums. By assuming that the
probe weights are drawn from pure module weight convolutions, we can make statements
about the probability of the probe function being satisfied.

The discussion to follow speaks in terms of w being drawn from a convolution of k
mocdlule weights, where £ may vary. We have already used M(k) to denote a k-fold con-
volution of module weights. To say that w i1s drawn from that convolution we will write
w ~ M(k). For our purposes thrce bounds are quite important and are summarized by
the following lemma.

Lemma 5 Let M(k) denote a k-fold convolution of module weight random variables. Then

(a) Prob{M(k) > 2ku,} = O(1/k).
(b) Prob{M(k) < ku,,/2} = O(1/k).

(c) If M (k) and My(2k) are independent convolutions, then Prob{M,(k) > M,(2k)} =
O(1/k).

Proof (a) and (b) are found in a manner entirely similar to the proof of Theorem 1. (c)
is found in the same fashion by first noting that

Prob{M,(k) > M,(2k)} = Prob{M,(k) — M,(2k) > 0},

and that the random difference has mean —kgy,, and standard deviation o,,,/3k/2.
O

An important component of our search strategy is to call the probe function with
bottleneck value w only if w exceeds Vy—the greatest probe value known to fail, and if
w is dominated by V,—the best known solution to date. This test offers protection from
serialized probe calculations when the probe value w touched by the search is small; with
high probability w < V. Let I; be the number of modules sumined to form the value of
V; immediately after the first rectangle search. We will say that the search is trregular
if I; < m/4n or I is undefined, and otherwise is regular. For the purposes of bounding

26

costs we will assume that any irregular search is completely serial, but then show that the
probability of an irregular search is so low that the expected cost due to irregular searches
is O((m?/n?)logm). We accomplish this by showing that the probability of an irregular
search is O(1/n?).

Suppose that I; is defined, and equals ¥ < m/4n. This implies that some w drawn
from a convolution of k + 1 modules actually satisfies the probe. For simplicity we assume
that w ~ M(k+ 1), although this is not rigorously true. The probability that a M(k + 1)
random variable satisfies the probe is no greater than the probability that w ~ M(m/4n)
satisfies a new probe which passes automatically if w > mu,,/2n, and which calls the
original probe otherwise. The new probe is constructed only for the purpose of bounding
probabilities. The probability of the new probe passing automatically is the probability
that w > mu,/2n; but since w ~ M(m/4n), lemma 5(a) says this probability is O(4n/m).
As 8n® < m, the probability of the new probe passing automatically is O(1/n?). The new
probe is also satisfied if w < mpu,,/2n, and the old probe passes w. A necessary condition
for the old probe to pass w is that each of n processors receives a load less than or equal
to w. This implies that the sum of all module weights can be no greater than nw. Given
that w < mp,/2n, the sum of all module weights can be no greater than mu,,/2. But by
lemma 5(b) the probability of this occurring is O(1/m). Finally we consider the possibility
that Iy is not defined. For this to occur the least weight on the first strip must pass
the probe, a weight composed of a single module weight. The same types of arguments
as used above will obviously establish that the chance of this occurrence is infinitisimal.
Consequently, the chance of an irregular search is O(1/n?).

Now we show that the expected complexity of a regular search is O((m?/n)logm).
Since the scarch is regular we have I; > m/4n. Let w be a weight touched by the search.
Two cases may occur.

Case 1 Suppose that w is composed of k module weights, and k < m/8n. For simplicity
we assume that w ~ M(k). A necessary condition for actually calling the probe
function is that M(k) exceed the value Vj, the value of V; immediately after the first
rectangle cvaluation. w is not independent of Vf, but we will assume so for the sake
of tractability. The probability of calling the probe function is then bounded by the
probability that a convolution M;(m/8n) exceeds another independent convolution
M,(m/4n). By lemma 5 the probability of this occuring is O(n/m) = O(1/n?). If
we assume that an actual probe call must serialize because w is too small, then the
expected cost due to this occurrence is only O((m?/n?) logm).

Case 2 Suppose that w is composed of k module weights, and k > m/8n. For the purposes
of bounding costs, supposc that if w < mu, /16n then the search serializes. By
lemma 5(b) the probability of this is O(n/m) = O(1/n?). and the expected cost
of scrialization in this fashion is O((m?/n?)logm). But if w > mpu,/16n, then
w > n?u/2 because we have assumed 8n*® < m. By theorems 1 and 4 the probability
of serialization is only O(1/n).

27

Finally, we must consider the behavior of the search during the first rectangle evalua-
tion. While unlikely, the worst case occurs if each of logm probes serializes. The cost of
cvaluating the first rectangle is then O(mlog? m). However, when m is sufficiently larger
than n (m?? > logm) this cost is dominated by the parallel O((m?/n)logm) complexity.

The discussions above have shown that when 8n% < m then the overall expected time
cost due to serialization is O((m?/n)logm). The expected cost in the absence of serializa-
tion was also O((m?*/n)log m), making this expression the overall expected time complexity
The space required for the parallel probe is only O(m).

6 Host-Satellite Problem

Our approach to the host-satellite problem is again modeled on Igbal’s probing approach.
For a given bottleneck value w we apply a PROBE2-like function (from the linear array
problem) to each satellite chain. The bottleneck weights are all of the form £, ;, where the
2 function is identical to that of the linear array problem. This probe will load the satellite
with the feasible load which minimizes the A function. The unassigned load is given to
the host, and the communication cost of breaking the chain is suffered by both the host
and the satcllite. The host’s cost is the sum of the n off-loaded subchains, the associated
communication costs, plus some additional load H which it must always compute. Since
cach satellite minimized the load given to the host under the bottleneck contraint on
satellite loads, the host’s load is minimized. The probe returns true if the host’s load is no
greater than the bottleneck weight. As before, we will first improve upon the known serial
solutions, and then show how to parallelize the mapping algorithm. We will reduce the
serial time complexity to O(max{nmlogm,nlog®m}), and find a parallel solution with
O(max{nm,nlogmmax{n,logm}}) complexity. When m is sufficiently larger than n the
nm term will dominate; in this case the complexity is within a constant factor of optimal
under the assumption that O(nm) time is required to load the problem onto host-satellite
system.

6.1 An Improved Probing Approach

The set of bottleneck weights for the host-satellite problem has a different structure than
that of the previous two problems, but it is still exploitable. The bottleneck weights for
a given chain are of the form Co + S;; + C; = Q,;, and consequently are not necessarily
monotone increasing in j. It is important to remember that each chain has its own set of Q2
values. To allow the possibility of moving a satellite’s entire chain onto the host we define
20 = Co, where Cy is the communication cost of transmitting the satellite’s incoming
data to the host. The assumption that communication costs are bounded allows us to
sort a chain’s bottleneck values in O(m) time, using brute force. Define arrays right_less
and left_greater, cach with m + 1 entries, and all entries initialized to zero. At the end
of the algorithm lefi_greater(j) will contain the number of bottleneck values ;; such that

28

i < j, and 4 > ;. Similarly, right_less(j) will contain the number of bottleneck
values @ such that k > j, and Qx < ©y;. Q;;’s rank (rank 0 meaning smallest) in
the sorted list is consequently right_less(j) + j—left_greater(j). The trick is to efficiently
compute the auxiliary arrays. For every j = 0,...,m we scan increasing values of Q;,
k > j incrementing right_less(j) and left_greater(k) every time we encounter a k such that
Qx < ;. The important point is that we may stop scanning as soon as k is so large
that C; < Sjx, because we are assured that €y, for larger k is always larger than ;.
Because the communication costs are bounded, these scans require constant time. Given
the ranks, the items can be sorted in O(m) time. This gives the sorting algorithm an O(m)
complexity.

O(nm) time is required to compute the auxiliary data structures for the probe function,
and to sort cach of n vectors of bottleneck values. The n sorted vectors can be merged into
a single sorted list in O(nmlogn) time. A binary search over the sorted list of bottleneck
values with a probe call at each touch has O(n log m) complexity. As before, we must
also consider the next smallest bottleneck weight b which passes the probe. & must lie
adjacent to the bottleneck value found by the search and so is considered in constant
time. Depending on the relationship between n and m, the overall complexity is either
O(nmlogn) or O(nlog? m); in either case an improvement over Bokhari’s O(nm? logm)
solution, or our O(nm logm) improvement upon Bokhari’s solution.

6.2 A Parallel Approach

The sorting step dominates the complexity of our serial algorithm. If we treat the host
like a shared memory, then the satellites could conceivably sort the bottleneck values in
parallel. However, in all likelihood a real host-satellite system will not emulate a shared-
memory machine particularly efficiently, so that we should practically consider another
approach.

An easy way to exploit parallelism is to perform the probe function in parallel. The
natural way to do this is to have each satellite call a PROBE2-like function on its own
subchain structure. To support such an approach, each satellite is loaded with its own
subchain costs. In parallel, each satellite sorts its own §2 values as previously described.
The probe values will be selected by performing a binary search over each satellite’s list
of bottleneck weights; first we search the entire list of the first satellite, then the entire
list of the second satellite, and so on. For every probe touch the host can query the
appropriate satellite for the proper probe value, and then transmit that value to every
satellite. Each satellite then calls a PROBE2-like function to determine the feasible load
which minimizes the remaining load (which is the host’s cost), and reports the remaining
load to the host. The host computes its own load and determines whether the probe
passed or failed. Loading the problem onto the satellites takes O(nm) time. Each parallel
probe call takes O(max{n,logm}) time; there are O(nlogm) probe calls. The overall
parallel time complexity is O(max{nm,nlogm max{n,logm}}). When m is sufficiently

29

larger than n the O(nm) cost of loading the problem dominates. In this case the algorithm
is within a constant factor of optimal, if we assume that the time to load the problem onto
the host-satellite system is proportional to the problem size.

7 Summary

We have examined three parallel mapping problems: mapping a chain of modules onto a
linear array, a chain of modules onto a shared memory machine, and mapping a set of chains
onto a host-satellite system. In each case we determine the mapping which minimizes the
computation’s finishing time, subject to a contiguity constraint. These problems were
originally shown to be tractable by Bokhari in [4]. Our work builds on his by first showing
that his solutions can immediately be improved by a factor of m (the number of modules),
and then by demonstrating that there are much more efficient solutions than those that
demonstrated the problems’ tractability. In addition, we showed how the target parallel
architectures themselves can be used to compute the optimal mapping. In some cases we
showed that algorithms with bad worst case complexity have good average case complexity.
The table below compares the time complexities of Bokhari’s original algorithms, our
iunprovement on those algorithms, Igbal’s approximation methods, our serial and parallel
improved methods. In some cases we have simplified complexities by assuming that m is
much larger than n.

. Improved Igbal Improved
Problem | Bokhari Bokhari (Approzimate) Serial Parallel
Linear 3 2
Array nm nm mn log(Wr/e) nm logm mlogmlogn
m?/n)logm
Shared 3 2 2 m?logm (
Memory nm’logm nm?logm m? log(Wr/e) (amortized) (ezpec.ted,
amortized)
Host- 21 1 log(Wr/e) !
Sutellite | ™ logm nm logm nm log(Wr/e nm logn nm

Acknowledgements This rescarch would not have been done if Dave O’Hallaron hadn’t
insisted that the layered graph approach could be expressed in dynamic programming
equations. This insistence ultimately led to the improvements in the layered graph algo-
rithms, and the scarch for better methods. David Middleton acted admirably as a tailor’s
duminy, and Shahid Bokhari civilly encouraged this work.

30

References

(1] ANNARATONE, M., ARNOULD, E., Gross, T., KuNG, H., LaM, M., MENzIL-
cioGLU, O., AND WEBB, J. The Warp computer: architecture, implementation, and
performance. IEEE Trans. on Computers C-36, 12 (December 1987), 1523-1538.

[2] BERGER, M., AND BOKHARI, S. H. A partitioning strategy for nonuniform problems
on multiprocessors. IEEE Trans. on Computers C-36, 5 (May 1987), 570-580.

(3] BOKHARI, S. Assignment Problems in Parallel and Distributed Computing. Kluwer
Academic Publishers, Boston, 1987.

(4] BokHARI, S. H. Partitioning problems in parallel, pipelined, and distributed com-
puting. IEEE Trans. on Computers 37, 1 (January 1988), 48-57.

(5] Bok1ARIL, S. H. A shortest tree algorithm for optimal assignments across space and
time in a distributed processor system. JEEE Trans. on Soft. Eng. SE-7, 6 (November
1981), 583-589.

[6] CVENTANOVIC, Z. The effects of problem partitioning, allocation, and granularity on
the performance of multiple-processor systems. IEEE Trans. on Computers C-36, 4
(April 1987), 421-432.

[7] IQBAL, M. Approzimate Algorithms for Partitioning and Assignment Problems. Tech.
Rep. 86-40, ICASE, June 1986.

(8] KERNIGHAN, G. Optimal sequential partitions of graphs. Journal of the ACM 18, 1
(January 1971), 34-40.

[9) KNuTH, D. The Art of Computer Programming, vol. 1. Addison-Wesley, New York,
1968.

(10] LARSON, H., AND SHUBERT, B. Probabilistic Models in Engineering Sciences. Vol. 1,
Wiley, New York, 1979.

[11}] NoGA, M. Sorting in parallel by double distributed partitioning. BIT 27, 3 (1987),
340--348.

[12] REED, D. A., ADAMS, L. M., AND PATRICK, M. L. Stencils and problem partition-
ings: their influence on the performance of multiple processor systecms. IEEE Trans.
on Computers C-36, 7 (July 1987), 845-858.

[13] SADAYAPPAN, P., AND ERCAL, F. Nearest-neighbor mappings of finite element

graphs onto processor meshes. IEEE Trans. on Computers C-36, 12 (December 1987),
1408 1424.

31

(14] SAvrTz, J., NAIK, V. K., AND NicoL, D. Reduction of the effects of the communi-
cation delays in scientific algorithms on message passing mimd architectures. SIAM
J. Sci. Stat. Comput 8, 1 (1987), s118-s134.

[15] SLEATOR, D., AND TARJAN, R. Self-adjusting binary search trees. Journal of the
ACM 32, 3 (July 1985), 652-686.

[16]) STONE, H. Critical load factors in distributed computer systems. IEEE Trans. on
Soft. Eng. SE-4, 3 (May 1978), 254-258.

[17] StTONE, H. Multiprocessor scheduling with the aid of network flow algorithms. JEEE
Trans. on Soft. Eng. SE-3, 1 (January 1977), 85-93.

(18] TowsLEY, D. Allocating programs containing branches and loops within a multiple
processor system. IEEE Trans. on Soft. Eng. SE-12, 10 (October 1986), 1018-1024.

[19] YANG, M., HUANG, J., AND CHOW, Y. Optimal parallel sorting scheme by order
statistics. SIAM Journal on Computing 16, 6 (December 1987), 990-1003.

32

Report Documentation Page

[ETTEIVROLS TV ST
w e Aot gl

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA CR-181655
ICASE Report No. 88-2

"4 Title and Subtitle 5. Report Date
PARALLEL ALGORITHMS FOR MAPPING PIPELINED AND April 1988
PARALLEL COMPUTATIONS

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.
David M. Nicol 88-2

10. Work Unit No.
505-90-21-01

"'9. Performing Organization Name and Address

Institute for Computer Applications in Science 11. Contract or Grant No.

and Engineering ‘ NAS1-18107
Mail Stop 132C, NASA Langley Research Center .
| _Hampton, VA _ 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Administration

14. ing Agency Code
Langley Research Center Sponsoring Agency

Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: Submitted to IEEE Trans. Comput.
Richard W. Barnwell

Final Report

16. Abstract

Many computational problems in 1image processing, signal processing, and
sclientific computing are naturally structured for either pipelined or parallel
computation. When mapping such problems onto a parallel architecture, it is often
necessary to aggregate an obvious problem decomposition. Even in this context the
general mapping problem 1is known to be computationally intractable, but recent
advances have been made in identifying classes of problems and architectures for
which optimal solutions can be found in polynomial time. Among these, the mapping
of pipelined or parallel computations onto linear array, shared memory, and host-
sattelite systems figures prominently. This paper extends that work first by
showing how to improve existing serial mapping algorithms. Our improvements have
significantl% lower time and space complexities: in one case we reduce a pub-
lished O(nm’) time algorithm for mapping m modules onto n processors to an
O(nmlogm) time complexity, and reduce its space requirements from O(mnm“) to
O(m). We then reduce run-time complexity further with parallel mapping algorithms
based on these 1improvements that run on the architectures for which they are
creating mappings.

17. Key Words {Suggested by Authoris)} 18. Distribution Statement
parallel algorithms, mapping, 6] ~ Computer Programming and
parallel processing, pipelines Software

66 — Systems Analysis
Unclassified - unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price
Unclassified Unclassified 34 AO03

NASA FORM 16826 OCT 86

